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Abstract—Real-time accurate human posture tracking in
unconstrained environments will provide an enabling technology
for physicians and other care providers to monitor the
movements of their patients in real-life situations. Constructing a
posture tracking system with the form factor suitable for kuman
wear requires the development of miniature units that can be
attached to the limb segments of interest in an unobtrusive way.
Simultaneously, fast algorithms that can produce real-time
posture estimates at sufficient rates are needed. In this paper, we
focus on the development of efficient and accurate algorithms
that compute the hmman pesture information from low-coest
miniature inertial and magoetic sensors, We present a new
technigue that computes posture estimates from the sensor data
23.8 times faster than the most efficient previously proposed
technique, and simultaneonsly increases the accuracy of the
estimates.

Keywords-posture, motion tracking, inerticl, magnetic,
dccelerometer, magnet ', compl fary filter.

1. INTRODUCTION

The real-time tracking of human posturgs in an
unconstrained environment will provide an enabling
technology for physicians and other health care professionals.
It will allow physicians to perform long-term monitoring of
patients, care providers to supervise the activities of elderly
subjects, or biomechanic researchers to camry out studies of
human movements during everyday activities. Tracking
postures, however, presents many challenges due to the large
number of degrees of freedom of the human body, and the
number of environtnents to which an average human is exposed
to during daily activities.

Current systems do not lend themselves well for tracking
posturgs during everyday activities. Camera-based systems
restrict the user to the laboratory or a constrained environment
where the cameras are installed. Systems based on magnetic
field emitters restrict the user to the area around the magnetic
source, and are generally tethered.

A posture tracking system that works in an unconstrained
environment needs to be sourceless, wireless, small, light, and
unobtrusive. Constructing such a system requires the
development of miniature sensor units that can be attached to
the user’s limbs and body in an unobtrusive manner. Given the
size, weight and ergonomic restrictions, these sensor units can
only include limited processing power. The sensor data can

0-7803-8463-6/04/$20.00 ©2004 |IEEE

yoky@cs.cmu.edu

techang@cs.cmu.edu

either be processed locally by including an embedded program
with the unit, or sent fo a central server for processing. In the
first case, only the limited computing power of an embedded
processor is available for the algorithm. In the latter case, the
central server needs to process concwrrently the data from each
of the units on the user (and pessibly multiple users.) For either
scenario, efficient posture tracking algorithms that can make
the most advantageous use of the computing resources
available are needed.

The recent miniaturization of inertial and magnetic sensots
has enabled the development of systems that fulfill the needed
requirements for real-time human posture tracking in
unconstrained environments. Inertial (accelerometers and rate
gyroscopes) and magnetic (magnetometers) sensors are
completely sourceless: they are self-contained, not requiring
the use of any external apparatus such as cameras or magnetic
emitters. However, the inertial and magnetic sensors available
with the size and weight factors applicable for wearable
applications tend to be very noisy. Theoretically it is possible
to recover complete posture information either by using only
three-dimensional accelerometers and magnetometers (in the
static case), or by using only three-dimensional rate
gyroscopes. Unfortunately, the quality of the signals of
miniature sensors does not permit this in practice. Posture
tracking systems that wuse only accelerometers and
magnetometers produce posture estimates that are only
reasonably accurate during static or quasistatic situations in
environments containing only small magnetic sources: These
systems make a strong assumption that the accelerometer’s
readings are measuring the earth’s gravity and that the
magnetometer’s readings are measuring the earth’s magnetic
field. In dynamic situations that introduce motion accelerations,
or environments containing magnetic sources, the assumptions
are invalid, and the performance of the systems degrades. A
posture tracker that only relies on miniature rate gyroscope
signals is not feasible due to accumulation of integration error.
The drift of the sensor will render the approximation invalid
within a few seconds. Fortunately, signals coming from the
accelerometer-magnetometer pair and the signal from the rate
gyroscope have complementary natures and a system that
combines these three types of sensors is able to overcome
many of the drawbacks described and produce better posture
estimates.

Despite the difficulties that arise when using only a subset
of accelerometers, magnetometers and rate gyroscopes, many
researchers have attempted to develop such type of systems by
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Figure 1. System schematic

using domain specific knowledge or computationally intensive
oplimization algorithms. Luinge [1] and Myageitia et al. [2]
designed systems based on accelerometers and gyroscopes to
track human movements. Systems based solely on inertial
sensors can only provide accurate posture estimates in two
dimensions and have a well-known drift problem around the
vertical axis. The motion tracking system in [1] wuses
knowledge of the joint limits as well as still periods to partially
correct for the drift. The tracking application in [2] does not
deal with rotations around the vertical. Neither of these
techniques is suitable for accurate complete posture tracking.
Geber-Egziabher et al. [3] and McGhee et al. [4] proposed
methods to compute complete posture estimates in quaternion
format using systems based on accelerometers and
magnetometers by  Newton-Gaussian  iteration. While
overcoming the drift problem, both these methods are
computationally intensive, and their performance degrades
substantially during periods of high acceleration or the
presence of an external magnetic field.

Systems that use accelerometers, rate gyroscopes and
magnetometers to track posture have also been previously
studied. Ang et al. [5] proposed a technique to detect the jitter
of a surgeon’s scalpel and correct for it. While this approach
works very well in its domain of application, the expected
range of movements is small (hand motion during surgery,) and
does not generalize to the more dynamic situations expected in
full body posture tracking. Bachmann et al. {6] developed a
complementary filter that tracks posture in the quaternion
representation. Roetenberg et al. [7} used a complementary
Kalman filter to compute posture in the rotation matrix
representation. Marins et al. [8] proposed an extended Kalman
filter to calculate posture using the quaternion representation.
Techniques that employ the Kalman filter require a
computationally intensive matrix inversion operation at each
estimate calculation to maintain optimality, and creating a good
process model requires the use of many states, increasing the
dimensionality of the matrices involved in the calculations.
Further, most of these techniques perform optimization in the
quaternion space [3, 4, 6, 8]. While mathematically sound, the
reduction of the sensor data to the quaternion space tends to
couple the errors of the different sensor signals leading to less
accurate posture estimates.

In addition to the research community, commercially
available sensors using miniature inertial and magnetic sensors

Figurc 2. System Display during a Posture Estimation Sessien

have also begun to appear. Examples of these systems are
Microstrain’s 3DM-G, Intersense’s InertiaCube2, and Xsens
Sport Technologies” MT9. These systems compute the posture
of the units using proprietary algorithms running on an
embedded processor on the unit and send the data to a PC
through the serial or USB port. A subject using these systems is
restricted to the length of the wires connecting the units to the
PC, and the onboard embedded processor of the units increases
their size and power requirements, which may make these
systems unviable in scenarios where small size and long battery
life are of essence.

In this paper, we develop a very efficient, real-time and
accurate algorithm to compute posture using the rotation matrix
representation. We first review how posture can be computed
using only an accelerometer-magnetometer pair or a rate
gyroscope. We show that the estimates from these two sources
have complementary frequency spectra, and propose a new
complementary filter technique that obtains accurate posture
estimates from the sensor signals. Finally, we compare our
results against two recently proposed techniques, and discuss
future directions of research.

II. SYSTEM DESCRIPTION

Our prototype system consists of three body-mounted units
(wrist, upper-arm, and chest) that are completely wireless,
sending data to a laptop equipped with a wireless transceiver. A
schematic of the system is shown in Figure 1.

Each unit consists of a sensing unit, a wireless transceiver
and batteries, measures 10.75x5.40x3.80 ¢m. and weighs 142
grams. For this prototype system, the Microstrain 3DM-G was
chosen as the sensing unit since it contains all the sensors of
interest. The 3DM-G contains accelerometers with a range of
+2g and a sensitivity of 312 mV/g, magnetometers with a range
of +2ganss and a sensitivity of 3mV/gauss, and rate gyroscopes
with a +300deg/s range and a sensitivity of 0.67 mV/(deg/s).
The wireless transceiver consists of a FreeZMove Serial Plug
that uses the Bluetooth protocol to send and receive data using
the serial port profile. The Bluetooth transceivers have a range
of 100 meters and can send data to any other Bluetooth-enabled
device, The data is collected by the laptop through a custom
made Java application and the posture of the body is displayed
on the computer screen using a VRML humanoid model. The
application is fully multithreaded and can read the data from
cach sensor concurrently. The system and computer display are
shown in Figure 2.
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III. POSTURE ESTIMATION FROM SENSOR DATA

Accurate posture estimates can be obtained from a4 unit
containing accelerometers, magnetometers and rate gyroscopes
by fusing the posture estimates from the accelerometer-
magnetometer pair and from the rate gyroscope. We show that
the posture can be obtained from the accelerometer-
magnetometer pair in three simple vector algebra steps in the
static case by a simplified version of the Triad algorithm [9].
Similarly, the posture from the rate gyroscope can be obtained
in only three steps. Fusion of these two independent posture
estimates provides an improved estimate that retains accuracy
over a broad range of situations.

A.  Obuaining Posture Estimates from an Accelerometer-
Magnetometer Pair

An ideal accelerometer undergoing no forced accelerations
(static case} produces a gravity reading that points towards the
center of the earth. Similarly, an ideal magnetometer
undergoing no external magnetic fields produces a reading
pointing to the magnetic north pele. The accelerometer-
magnetometer combination then gives us readings for the
orientation of two fixed vectors with known direction (down
and porth.) Obtaining a posture from these two readings is
then a simple application of the Triad algorithm, and we can
compute a posture estimate by simply tracking the direction of
these two vectors. For the sake of efficiency, we assume that
one of our sensor readings is ideal (the gravity reading.) Under
this assumption, the posture can be estimated in three simple
vector steps.

We denote a fixed world frame as Frame 0 (with axes x°, »°
and z%,) and a sensor frame attached to the sensors as Frame 1
(with axes x’, ' and z'.) We label the gravity vector and the
magnetic field vector given in Frame 1 as and ¢
respectively. By choosing the fixed world frame, so that z° is
points towards the center of the earth and x* points to the
north, g’ is collinear with z° and e is restricted to the XZ plane
of Frame 0. Figure 3 shows the relationship between these
vectors. Computing the cross product of g’ and & will
automatically produce a vecior aligned with the y-axis of
Frame 0.

Since the magnetometer vector ¢’ has a positive x
component on any latitude south of the magnetic north pole,
we can find the three axes of Frame 1 in these three steps:

=g (N
3 =g e @
x =y xZ 3
If we assume that x', y' and 2' are column vectors, the rotation

matrix R that computes the posture of the sensors in the fixed
world Frame 0 is simply:

Figure 3. Gravity and magnetic vectors on 2 z-down, X-north coordinate
frame
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Besides its efficiency, this algorithm has other advantages,
It does not require an injtial estimate of the magnetic field
vector like other proposed methods [3, 4, 6, 8]. Obtaining this
injtial estimate imposes an additional recalibraticn step
whenever there is a change in location.

B Obtaining Posture Estimates from Rate Gyroscope

An ideal rate gyroscope produces readings of the angular
velocity it is exposed to. Assuming an initial posture estimate
is given, obtaining posture estimates from the rate gyroscope
involves only simple integration steps. If an initial estimate is
given in Euler angles, simply integrating the angular velocity
obtained from the three axes of the rate gyroscope and adding
the integration results to the initial posture produce all
consequent postures,

C. Obtaining Combined Posture Estimatess

In the previous sections, we obtained posture estimates
from the accelerometer-magnetometer pair and the rate
gyroscope assuming that the sensors provide noise-free ideal
signals. In reality, howevet, all sensor readings contain noise.

i.  Sensor Signal Analysis

A real accelerometer or magnetometer under external
stimuli will produce readings that can be decomposed into
four parts:

s,=d+s,+b+n (5)
where s, is the total sensor reading, 4 is the vector we are
tracking (gravity or the carth’s magnetic field), s, is the
external stimuli (forced acceleration or magnetic field), b is a
sensor bias component, and » is a wide-band noise component.
The sensor bias can be mostly calibrated away, and the
magnitude of »# is usually small with respect to the desired
component 4 and can be attenuated using standard frequency
signal processing. Decoupling 4 and syis much more complex.
The relationship between these two components is dependent
on the movement (in the case of the accelerometer) or the
external magnetic field the sensor is measuring (in the case of
the magnetometer), and the relative magnitudes of these
components can vary greatly. However, frequency analysis of
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the sensor signals shows that d tends to lie towards the low
end of the frequency spectrum, while s; has more high
frequencies components.

Similarly, we can decompose the readings from real rate
gyroscopes into four parts:

r,=r,+@+c+m ©

where r, is the total sensor reading, r, is a slow-moving drift
component, @ is the angular velocity of the gyroscope, ¢ is the
sensor bias, and m is a wide-band noise component. The drift,
being a slow moving process, tends to reside towards the
lower end of the spectrum, and our desired signal, the angular
velocity, has more high frequency components,

ii.  Filter Design

The desired signals coming from the accelerometer-
magnetometer pair tend to lie towards the low-end of the
frequency spectrum, while the desired signals coming from the
rate gyroscope tend to have more high frequency components,
Our signals have complementary frequency spectra, and we
can use a simple first-order complementary filter to fuse the
estimates. We take a complementary filter approach instead of
the more standard Kalman filter because of two reasons: (1) A
complementary filter structure is very efficient. A Kalman
filter requires an expensive matrix inversion operation at every
estimate. While it is possible to obtain reasonszble results
witheut performing this update at every step, the filter loses its
optimality. (2) The nature of our signals lends itself very well
to a complementary filter approach. Creating a Kalman filter
with equivalent performance would require a process model
with multiple states leading to a much larger computational
overhead.

We  designed a simple time-domain  first-order
complementary filter that performs low-pass filtering on the
signals from the accelerometer-magnetometer pair, and high-
pass filtering on the signals from the rate gyroscope. While
some previous approaches to obtaining postures from the same
sensors have also used complementary filter techniques, our
approach differs in two key aspects: (1) Previous techniques
compute the posture using the readings from the
accelerometer-magnetometer pair, and fuse that posture
estimate with the posture obtained from the readings of the
gyroscope. Instead, our filter simply tracks the direction of the
gravity and earth magnetic field vectors. We then use the
accelerometer-magnetometer algorithm described in section
IMT.A on the filter’s output to solve for the posture. (2) Most
previous techniques involve filtering in the quaternion space.
The signal (and noises) from the accelerometer and
magnetometer are coupled together, and given the different
relative weights of each quaternion component in different
parts of the quaternion space, it is difficult to know which
component should be weighed more heavily. While the
approach of weighing all components equally is very common,
it may not produce the best results. Our technique resolves this
issue by staying in a linear space. Figure 4 shows the filter
structure, including the final step of transforming the filter
outputs into posture estimates.

The kernel of the filter is the core section that performs the
signal processing and fusion, producing estimates of the
directions of the gravity and earth’s magnetic fiekl vector,
Simple frequency analysis of the kernel can be used to analyze
the filter’s operations. The inputs to the filter’s kernel are two
6x1 vectors: (g, e,) is a 6x1 vector containing the readings
from the accelerometer and the magnetometer, and (Ag; , e, )
are the step change to the filter’s output (g, , e,) as computed
from the rate gyroscope’s readings. The Laplace domain
equivalents of these three vectors will be denoted by (G, , E.),
(G, , sE)) and (G, , E,,) respectively. Solving for the filter’s
output, we find that G, is given by:

G, =[ 4 )Gw(-s—]G, @
s+k s+k

and E,; is given by:

k. s
E = t_|E, + E £
® (s+k2] 0 (s+kJ ! @

where k; and £; are constant gains, Equations (7) and (8) show

that the signals from the accelerometer-magnetometer pair
(G, E,) are filtered by a first-order low-pass filter, while the
estimates obtained from the rate gyroscope (G, E;) are filtered
by a first-order high-pass filter. By filtering out the high
frequency components of the signal from the accelerometer-
magnetometer pair and the low-frequency components of the
rate gyroscope’s signal, the complementary filter produces an
estimate of the desired components of the sensors’ signals and
cembines these components to produce the filter output.

The gains k; and k; determine the crossover frequencies of
the complementary filter, that is the frequencies at which the
signals from both inputs are given equal weight. The crossover
frequency f; (in Hertz) of a first-order complementary given a
gain 4 can be calculated by the formula:

&
=— 9
te o )

An initial estimate of the crossover frequency can be obtained
by analyzing the spectra of the sensor signals to find where the
cutoff frequency of the low-pass and high-pass filters should
be. Some manual fine-tuning is usually required.

iii. Filtering the Sensor Signals
The filter vectorizes the accelerometer and magnetometer
readings (g, &, into a 6x1 vector. Simultaneously, it
computes the rates of change to the current filter estimates of
gravity and earth magnetic field vectors (g, , €,) by simply
taking the cross product of the gyroscope readings () with the
current filter estimates:

(Ag.0e)=(0x g wxe,) (10)
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Figure 4. Complementary filter to obtain posture based on an accelerometer-
magenstometer pair and a rate gyroscope

The difference signals (g.. , e.) between the readings of
the accelerometer-magnetometer pair and the filter estimates
of gravity and magnetic north are given by a simple vector
substraction:

(ger’eer =(ga’eo)_(ge:’eej) (Il)
and the gain-adjusted difference signals (4g; , 4e2) are
computed by simply multiplying this vector by the gains:

(AgzsAez): (kn “8orrky ‘eer) (12)
where using independent gains for the gravity and earth
magnetic field estimates provides flexibility in dealing with
interferences to either of these vectors. Finally, the filter
estimates are updated by fusing the rate of change estimates
from both sensor streams:

(ge.r’em‘): (g&r’ees)+ [(A&:A%)"' (Agz’Aez)] T (13)

where T is the sampling period. Using these estimates of the
direction of gravity and the earth’s magnetic field (g, , e..),
the current posture estimate in rotation matrix format R,, is
calculated using the accelerometer-magnetometer algorithm
described in section IITA.

IV. VALIDATION

We tested the accuracy of our algorithm by comparing the
posture estimates obtained from our fechnique against the
actual postures obtained using a robot manipulator. We
collected data by attaching one of our wearable units
simultaneously to the end effector of the manipulator, and the
wrist of our subjects, Our subjects performed several
movements we expect to encounter in every day life such as
walking and nunning (in place), brushing teeth, and putting on
clothes. We then compared the accuracy and speed of our
algorithms to two other comparable techniques by
implementing the algorithms described in [6] and [8]. The
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Figure 5. Postute estimates duting a running movement

description of the algorithm in {7] does not provide enough
details for implementation.

A.  Experimental Setup

We used a PHANToM 1.5 robot made by Sensable
Technology. The PHANToM has millimeter positional
accuracy, but has a limited wotkspace. We extended the
workspace of the robot by adding an 38.75 cm. extensor rod to
the end effector of the PHANToM. This extensor rod served
two purposes: It allowed us to stay away from the magnetic
interference caused by the metallic parts of the robot and it
provided us with a workspace large enough for realistic human
movements. The effect was to more than triple the size of the
last link of the robot kinematic chain.

B.  Results

We implemented all algorithms in C++ using the optimized
Intel Math Kernel Library on a 1.7GHz Pentium IV computer.
The parameters of all three algorithms were chosen for
maximum posture estimate accuracy. Data from both the unit
and the PHANToM robot was recorded at 50Hz, and each
recorded activity lasted 10 seconds. To compare the accuracy
of each technique, posture estimates were computed for each
data sample and compared to the postures computed from the
robot. To calculate the upper bound update frequency of the
algorithms, the data was recorded and analyzed off-line. We
timed the execution time of each algorithm and found the
average frequency at which they can produce posture estimates
by simply dividing the total execution time by the number of
samples.

Typical results for two of the recorded movements are
shown on figures 5 and 6. These figures show only the pitch
angles of the posture estimates for visualization purposes. The
figures plot the pitch estimates in radians against time in
seconds for all techniques. The plot on the top corresponds to
the Kalman filter approach proposed in [8], the plot in the
middle to the complementary filter approach proposed in [6],
and the bottom plot corresponds to our new technique. Figure 5
shows the posture estimates during a running movement, and
Figure 6 shows the pitch estimates during a brushing teeth
movement. The running movement had an average angular
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Figure 6. Posture estimates during a brushing teeth movement

velocity of 1.80 rad/s, and the brushing teeth movement had an
average angular velocity of 0.79 rad/s.

A unit placed on the wrist during a running movement
(such as that of Figure 5) undergoes oscillatory motion as the
wrist swings back and forth. The sensor unit experiences high
movement acceleration at the beginning and the end of each
swing as the arm gathers or loses speed. During these
moments, the acceleration due to the movement is of the same
order as the acceleration due to gravity, and the accelerometer
readings do not provide a good estimate of the direction of
gravity. The simple process model proposed in [8] does not
incorporate enough information to deal with cases of high
movement acceleration and has special trouble handling
acceleration peaks (R? = 0.197). The complementary filter
approaches handle these peaks better: Since the filter performs
a low-pass operation on the acceleration signal, peaks are
smoothed out. However, the complementary filter proposed in
[6] couples the accelerometer and magnetometer data and
performs the smoothing in quaternion space. The non-linearity
of the quaternion space and the necessary quaternion
renormalizing step after every filter negatively affects the
accuracy of the filter by introducing accumulating errors in the
posture estimates (R? = 0.529). By performing the filtering in
the linear acceleration and magnetic ficld space, our filter
produces more accurate estimates (R* = .790).

Similarly, a unit placed on the wrist during a brushing-teeth
motion (such as that of Figure 6) will undergo highly vibratory
motion with consecutive acceleration peaks at every up and
down motion. The Kalman filter approach in [8] is unable to
recover fast enough from these peaks to produce reasonable
results (R> = 0.0091). The complementary filter technique
outlined in [6] produces estimates that drift away from the true
posture as the quaternion update steps cause quaternion
estimates that heavily deviate from unit magnitude and larger
renormalizations are reqmred (R* = 0.549). In contrast, our
complementary filter again produced posture estimates that
closely matched the true postures R*=0. 873).

Our speed tests showed that both complementary filter
techniques are faster the Kalman filter approach described in
[8], due to computationally intensive mathematical operations
required by the filter. Comparing the complementary filter
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TABLE L COMPARISON OF RESULTS
Runmng Brushmg Frequency
Movement (R} (RY) {KHz)
Marins [8] 0.197 0.00¢1 1.380
Bachmann [6] 0.529 0.549 5.284
Qur techniqu 0.706 0.873 125.75

techniques, our technique produced posture estimated at an
update frequency of 125.75 KHz, compared to the update rate
of 5.284KHz of the approach in [6]. This represents a 23.8
factor increase. All results are summarized in Table 1.

V. CONCLUSION

We have presented a new technique that computes accurate
posture estimates in real-time from sourceless, miniature
inertial and magnetic sensors, We compared this technique to
previous approaches and showed that it produced more
accurate results 23.8 times faster than the next fastest
algorithm. This technique is suitable for use in both units with
embedded programs onboard, as well as servers handling
multiple units concurrently.

Future work will include the development of mare robust
algorithms that can handle the presence of surrounding
magnetic sources, and the creation of custom-made wearable
units better suited for long-term wear,
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